CAIRO UNIVERSITY FACULTY OF ENGINEERING PUBLIC WORKS DEPARTMENT

Structural Design of Highways (Part II-A) Asphalt Pavement Materials

Handout (2) : Soil Compaction

Lecturer: Dr. Gamal S. Darwish

2-2 Soil Compaction

When soil is to be used as embankment or subbase material in highway construction, it is essential that the material be placed in uniform layers and compacted to a high density. Proper compaction of the soil will reduce subsequent settlement and volume change to a minimum, thereby enhancing the strength of the embankment or subbase.

Definition:

Reduction in voids ratio by mechanical means (air is forced out or dissolved in soil water)

Objectives

- 1- Increase shear strength.
- 2- Reduce permeability.
- **3-** Reduce tendency to volume change

(shrinkage or swell).

- 4- Reduce tendency to future settlement
- **5- Reduce tendency to frost heave**

Soil Compaction in the Lab:

Test Details	Standard AASHTO (T99)	Modified AASHTO (T180)
Diameter of mold (in.)	4 or 6	4 or 6
Height of sample (in.)	5 cut to 4.58	5 cut to 4.58
Number of lifts	3	5
Blows per lift	25 or 56	25 or 56
Weight of hammer (lb)	5.5	10
Diameter of compacting surface (in.)	2	2
Free-fall distance (in.)	12	18
Net volume (ft3)	1/30 or 1/13.33	1/30 or 1/13.33

Table 17.6 Details of the Standard AASHTO and Modified AASHTO Tests

Effect of Energy on Soil Compaction

Increasing compaction energy <u>Lower OWC</u> and <u>higher dry density</u>

In the lab increasing compaction energy = increasing number of blows

Lecture Notes - Dr. Gamal S.Darwish

Standard Proctor test equipment

Das, 1998

Soil Compaction in the Lab:

\$95%

Example 17.7 Determining Maximum Dry Density and Optimum Moisture Content

The table shows results obtained from a standard AASHTO compaction test on six samples, 4 in. diameter, of a soil to be used as fill for a highway. Determine the maximum dry density and the optimum moisture content of the soil.

Sample No.	Weight Compacted Soil, W (lb)	Moisture Content, w (%)	
1	4.16	4.0	
2	4.39	6.1	
3	4.60	7.8	
4	4.68	10.1	
5	4.57	12.1	
6	4.47	14.0	

Solution: Since we are using the standard AASHTO test, 4 in. diameter, the volume of each sample is 1/30 ft³. The dry densities are calculated as shown.

Lecture Notes -	Dr.	Gamal	S.Darwish
-----------------	-----	-------	-----------

Sample No.	Bulk Density, γ (30W (lb/ft ³)	Moisture Content, w (%)	Dry Density, γ_d $\frac{lb/ft^3}{\left(\frac{\gamma}{1+w}\right)}$
1	124.80	4.0	120.0
2	131.70	6.1	124.1
3	138.00	7.8	128.0
4	140.40	10.1	127.5
5	137.10	12.0	122.4
6	134.10	14.0	117.6

Figure 17.13 shows the plot of dry density versus moisture content, from which it is determined that maximum dry density is 129 lb/ft³ and the optimum moisture content is 9%.

Field Soil Compaction

Because of the differences between lab and field compaction methods, the maximum dry density in the field may reach 90% to 95%.

Compaction Methods and Equipment

(Roller Compaction) 1- Pressure Types (Suitable for cohesive soils) Smooth-Wheeled Rollers Pneumatic-tired Roller Sheep's Foot Roller

2- Vibratory Roller Types

(Suitable for gravel and sand soils)

3- Impact Types

(Plate Compaction)

Field Compaction Equipment

Smooth-wheel roller (drum)

- Can be used on all soil types except for rocky soils.
- Compactive effort: static weight
- The most common use of large smooth wheel rollers is for proof-rolling subgrades and compacting asphalt pavement.

Pneumatic (or rubber-tired) roller

- Can be used for both granular and fine-grained soils.
- Compactive effort: static weight
- Can be used for highway fills or earth dam construction.

Sheepsfoot rollers

- It is best suited for clayed soils.
- Compactive effort: static weight

Mesh (or grid pattern) roller

- It is ideally suited for compacting rocky soils, gravels, and sands. With high towing speed, the material is vibrated, crushed, and impacted.
- Compactive effort: static weight and vibration.

Quality control tests

To determine γ_d of a soil (subgrade, base or subbase) in the site

Quality control tests (cont.)

<u>3- Core-Cutter Test</u>

- a) Quick.
- b) Not suitable for granular soils.

To increase the max. dry density

- **1- Increase the No. of passes of roller.**
- 2- Increase the weight of roller.
- **3-** Modify water content (probably increase the (w/c)).
- 4- Decrease the thickness of layers (increase no. of layers).
- **5- Change the roller type.**