Table 1
 Level-of-Service Criteria for Two-Lane Highways in Class I

LOS	Percent Time-Spent-Following	Average Travel Speed (mi/h)	
A	≤ 35	> 55	
В	> 35-50	> 50-55	
C	> 50-65	> 45-50	
D	> 65-80	> 40-45	
E	> 80	≤ 40	

Note: LOS F applies whenever the flow rate exceeds the segment capacity.

 Table 2
 Level-of-Service Criteria for Two-Lane Highways in Class II

LOS	Percent Time-Spent-Following	
A	≤ 40	
В	$40 < PTSF \le 55$	
C	$55 < PTSF \le 70$	
D	$70 < PTSF \le 85$	
E	> 85	

Note: LOSF applies whenever the flow rate exceeds the segment capacity.

Table 3 Adjustment $(f_{d/np})$ for Combined Effect of Directional Distribution of Traffic and Percentage of No-Passing Zones on Percent Time-Spent-Following on Two-Way Segments

		Ii	ncrease in Perc	ent Time-Spen	t-Following (%	(o)
			No-	Passing Zones	(%)	
Two-Way Flow Rate, v_p (pc/h)	0	20	40	60	80	100
		Directio	onal Split = 50	/50		
≤ 200	0.0	10.1	17.2	20.2	21.0	21.8
400	0.0	12.4	19.0	22.7	23.8	24.8
600	0.0	11.2	16.0	18.7	19.7	20.5
800	0.0	9.0	12.3	14.1	14.5	15.4
1400	0.0	3.6	5.5	6.7	7.3	7.9
2000	0.0	1.8	2.9	3.7	4.1	4.4
2600	0.0	1.1	1.6	2.0	2.3	2.4
3200	0.0	0.7	0.9	1.1	1.2	1.4
		Directio	onal Split = 60	/40		
≤ 200	1.6	11.8	17.2	22.5	23.1	23.7
400	0.5	11.7	16.2	20.7	21.5	22.2
600	0.0	11.5	15.2	18.9	19.8	20.7
800	0.0	7.6	10.3	13.0	13.7	14.4
1400	0.0	3.7	5.4	7.1	7.6	8.1
2000	0.0	2.3	3.4	3.6	4.0	4.3
≥ 2600	0.0	0.9	1.4	1.9	2.1	2.2
		Directio	onal Split = 70	/30		
≤ 200	2.8	13.4	19.1	24.8	25.2	25.5
400	1.1	12.5	17.3	22.0	22.6	23.2
600	0.0	11.6	15.4	19.1	20.0	20.9
800	0.0	7.7	10.5	13.3	14.0	14.6
1400	0.0	3.8	5.6	7.4	7.9	8.3
≥ 2000	0.0	1.4	4.9	3.5	3.9	4.2
		Directio	onal Split = 80	/20		
≤ 200	5.1	17.5	24.3	31.0	31.3	31.6
400	2.5	15.8	21.5	27.1	27.6	28.0
600	0.0	14.0	18.6	23.2	23.9	24.5
800	0.0	9.3	12.7	16.0	16.5	17.0
1400	0.0	4.6	6.7	8.7	9.1	9.5
≥ 2000	0.0	2.4	3.4	4.5	4.7	4.9
		Directio	onal Split = 90	/10		
≤ 200	5.6	21.6	29.4	37.2	37.4	37.6
400	2.4	19.0	25.6	32.2	32.5	32.8
600	0.0	16.3	21.8	27.2	27.6	28.0
800	0.0	10.9	14.8	18.6	19.0	19.4
≥ 1400	0.0	5.5	7.8	10.0	10.4	10.7

Table 4 Grade Adjustment Factor (f_G) to Determine Percent Time-Spent-Following on Two-Way and Directional Segments

		Туре од	f Terrain
Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
0-600	0-300	1.00	0.77
> 600-1200	> 300-600	1.00	0.94
> 1200	> 600	1.00	1.00

Table 5Passenger-Car Equivalents for Trucks (E_T) and RVs (E_R) to Determine Percent
Time-Spent-Following on Two-Way and Directional Segments

			Type o	f Terrain
Vehicle Type	0 ,	Range of Directional Flow Rates (pc/h)	Level	Rolling
Trucks, E_T	0-600	0-300	1.1	1.8
	> 600-1,200	> 300 - 600	1.1	1.5
	> 1,200	> 600	1.0	1.0
RVs, E_R	0-600	0 - 300	1.0	1.0
	> 600-1,200	> 300-600	1.0	1.0
	> 1,200	> 600	1.0	1.0

Table 6 Adjustment (f_{np}) for Effect of No-Passing Zones on Average Travel Speed on Two-Way Segments

		Reduct	ion in Avera	ge Travel Sp	eed (mi/h)	
			No-Passin	ag Zones (%))	
Two-Way Demand Flow Rate, v_p (pc/h)	0	20	40	60	80	100
0	0.0	0.0	0.0	0.0	0.0	0.0
200	0.0	0.6	1.4	2.4	2.6	3.5
400	0.0	1.7	2.7	3.5	3.9	4.5
600	0.0	1.6	2.4	3.0	3.4	3.9
800	0.0	1.4	1.9	2.4	2.7	3.0
1000	0.0	1.1	1.6	2.0	2.2	2.6
1200	0.0	0.8	1.2	1.6	1.9	2.
1400	0.0	0.6	0.9	1.2	1.4	1.7
1600	0.0	0.6	0.8	1.1	1.3	1.5
1800	0.0	0.5	0.7	1.0	1.1	1.3
2000	0.0	0.5	0.6	0.9	1.0	1.
2200	0.0	0.5	0.6	0.9	0.9	1.
2400	0.0	0.5	0.6	0.8	0.9	1.
2600	0.0	0.5	0.6	0.8	0.9	1.0
2800	0.0	0.5	0.6	0.7	0.8	0.9
3000	0.0	0.5	0.6	0.7	0.7	0.0
3200	0.0	0.5	0.6	0.6	0.6	0.

 $\textbf{Table 7} \quad \text{Grade Adjustment Factor } (f_{\text{G}}) \text{ to Determine Average Travel Speeds on Two-Way and Directional Segments}$

		Type o	f Terrain
Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
0-600	0-300	1.00	0.71
> 600-1200	> 300-600	1.00	0.93
> 1200	> 600	1.00	0.99

Table 8 Passenger-Car Equivalents for Trucks (E_T) and RVs (E_R) to Determine Speeds on
Two-Way and Directional Segments

			Type o	f Terrain
Vehicle Type	Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
Trucks, E_T	0-600	0-300	1.7	2.5
	> 600-1,200	> 300 - 600	1.2	1.9
	> 1,200	> 600	1.1	1.5
RVs, E_R	0 - 600	0 - 300	1.0	1.1
	> 600-1,200	> 300-600	1.0	1.1
	> 1,200	> 600	1.0	1.1

Table 9 Adjustment (f_{LS}) for Lane Width and Shoulder Width

		Reduction in	FFS (mi/h)	
		Shoulder V	Vidth (ft)	
Lane Width (ft)	≥ 0 < 2	≥ 2 < 4	≥ 4 < 6	≥ 6
9 < 10	6.4	4.8	3.5	2.2
$\geq 10 < 11$	5.3	3.7	2.4	1.1
$\geq 11 < 12$	4.7	3.0	1.7	0.4
≥ 12	4.2	2.6	1.3	0.0

Table 10 Adjustment (f_A) for Access-Point Density

Access Points per mi	Reduction in FFS (mi/h)	
0	0.0	
10	2.5	
20	5.0	
30	7.5	
40	10.0	

 Table 11
 Level-of-Service Criteria for Multilane Highways

				LOS		
Free-Flow Speed	 Criteria	A	В	С	D	E
60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40
	Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
	Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00
	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41
	Average speed (mi/h	55.0	55.0	54.9	52.9	51.2
	Maximum v/c	0.29	0.47	0.68	0.88	1.00
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43
	Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c	0.28	0.45	0.65	0.86	1.00
	Maximum service flow rate (pc/h/ln)	550	900	1300	1710	2000
45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.00
	Maximum service flow rate (pc/h/ln)	480	810	1170	1550	1900

Table 12Passenger-Car Equivalents for Trucks and Buses (E_T) and RVs (E_R) on General
Highway Segments: Multilane Highways and Basic Freeway Sections

		Type of Terrain	ι
Factor	Level	Rolling	Mountainous
E_T (trucks and buses)	1.5	2.5	4.5
E_R (RVs)	1.2	2.0	4.0

Table 13 Adjustment (f_{LW}) for Lane Width

Lane Width (ft)	Reduction in FFS, f_{LW} (mi/h)	
12	0.0	
11	1.9	
10	6.6	

Table 14 Adjustment (f_{LC}) for Lateral Clearance

Four-Lane Highways		Six-Lane Highways	
Total Lateral Clearance (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance (ft)	Reduction in FFS (mi/h)
12	0.0	12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9

Table 15 Adjustment (f_M) for Median Type

Median Type	Reduction in FFS (mi/h)
Undivided highways Divided highways (including TWLTLs)	1.6 0.0

Table 16 Adjustment (f_A) for Access-Point Density

	Reduction in FFS	
Access Points/Mile	(mi/h)	
0	0.0	
10	2.5	
20	5.0	
30	7.5	
40	10.0	

Figure 1: Speed- Flow Curves with Level -of-Service Criteria for Multilane Highways

$$f_w = 1 + \frac{(W - 12)}{30}$$

$$f_{HV} = \frac{100}{100 + \%HV(E_T - 1)}$$

$$f_g = 1 - \frac{\%G}{200}$$

$$f_p = \frac{N - 0.1 - \frac{18N_m}{3600}}{N}$$

$$f_{bb} = \frac{N - \frac{14.4N_B}{3600}}{N}$$

$$f_a = 0.900$$
 in CBD
 $f_a = 1.0$ in all other areas

$$f_{LU}$$
: Through or shared lane group: f_{LU} =0.95 Exclusive left turn or right turn f_{LU} =1

$$f_{LT}: \begin{array}{c} \text{Shared lane group:} \\ f_{LT}=1/\left(1+0.05\ P_{LT}\right) \\ \text{Exclusive left turn:} \\ f_{LT}=0.95 \end{array}$$

$$f_{RT}$$
: Exclusive right turn : $f_{LT} = 0.85$
Shared lane : $f_{RT} = 1 - 0.15 P_{RT}$

$$W = lane width (ft)$$

$$\%$$
 G = percent grade on a lane group approach

$$N =$$
 number of lanes in lane group
 $N_m =$ number of parking maneuvers/h

N = number of lanes in lane group $N_B =$ number of buses stopping/h

 P_{LT} = proportion of LTs in lane group

 P_{RT} = proportion of RTs in lane group

Level-of-Service Criteria for Signalized Intersections

Los	Signalized Intersection
Α	≤10 sec
В	10-20 sec
С	20–35 sec
D	35–55 sec
Е	55–80 sec
F	≥80 sec

$$d_{li} = 0.5C \frac{\left(1 - \frac{gi}{C}\right)^2}{1 - \left(\frac{gi}{C}\right)\left[\min(X_{i,1}.0)\right]}$$

Where:

 d_{ii} = delay per vehicle for lane group i (sec/veh),

C = cycle length (seconds),

 g_i = effective green time for lane group i (seconds),

 X_i = volume/capacity (v/c) ratio for lane group i

$$d_A = \frac{\sum_i d_i v_i}{\sum_i v_i}$$

Where:

 d_A = average delay per vehicle for approach A in seconds,

 d_i = average delay per vehicle for lane group i (on approach A) in seconds, and

 v_i = analysis flow rate for lane group i in veh/h.

$$d_I = \frac{\sum_A d_A v_A}{\sum_A v_A}$$

Where

 d_I = average delay per vehicle for intersection in seconds, and

 d_A = average delay per vehicle for approach A in seconds, and

 v_A = analysis flow rate for approach A in veh/h.