

- Current Car Ownership Rate = 0.5 car/hh
- Future Car Ownership Rate = 1.0 car/hh

Growth Factor F = 1.0/0.5 = 2

Future Trip Production = 2.0 * 2125 = 4250 trips/day

Model 1				
	Low Income	Med Income	High Income	
HH Size 1	1000 hh 2500 trip	1000 hh 4000 trip		
	Rate = 2.5	Rate = 4		
HH Size 2				
HH Size 3				
HH Size 4				

Model 2			
	Low and Med Income	High Income	
HH Size 1	2000 hh 6500 trip		-
	Rate = 3.25		
HH Size 2			
HH Size 3			
HH Size 4			
	•		

In the target year
1000 hhs low income and family_size_1
1700 hhs mid income and family_size_1
Model 1
Total trips = 1000*2.5 + 1700*4.0 = 9300
Model 2
Total Trips = 2700 * 3.25 = 8775

- Independent of the zone system of the study area
- No need to make assumption about the relationship between no of trips and independent variables
- If combined with the regression technique, a different relationship could be used for each cell

	Low Income	Med Income	High Income	
HH Size 1	Z = ax+by	Z = ax+(b/2)y ^{1.5}		
HH Size 2				
HH Size 3				
HH Size 4				

Disadvantages

• The methodology does not allow extrapolation beyond the calibration strata

e.g., If the model considered classes with income up to \$100,000, we can not predict the trip rate for households with income greater than \$100,000.

- It needs large sample size for calibration. Otherwise, some cells are not reliable to use their rate in predictions.
- There is no effective way to choose among variables for classification, or to choose the groupings of a given variable.

- Zone Totals
- Depends on the size of the zone.
- Heterocedasticity (variability of the variance) is likely to occur.
- Tend to have higher intercorrelation between the independent variables

- Zone Rates
- Independent of the zone size.
- Reduces heterocedasticity
- Less intercorrelation between the independent variables

Household-based Regression

- More expensive in terms of data collection and calibration
- More sampling error is expected

