Cairo University Faculty of Engineering Public Works Department

Traffic Engineering

Highway Capacity and Level of Service

Dr. Dalia Said, Assistant Professor, Highway and Traffic Engineering Civil Engineering Department, Cairo University, dalia_said@yahoo.com

Highway Capacity and LOS: Objectives	
 Capacity: The maximum hourly flow rate at which vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway under prevailing <i>roadway</i>, <i>traffic</i> and <i>control conditions</i> 	
1. Roadway conditions:	
 Associated with the geometric design of the road 	
 Examples: number of lanes, lane width, shoulder width, horizontal and vertical alignment, 	l
2. Traffic conditions:	
 Associated with characteristics of traffic stream 	
 Examples: traffic composition, directional distribution on two-lane highways, 	
3. Control conditions:	
– Include traffic control devices, signal phasing, cycle length,	
 Capacity analysis involves the quantitative evaluation of the capability of a road section to carry traffic 	
– Level of service (LOS): a qualitative measure of:	
• The operating conditions within a traffic system, and	
• How these conditions are perceived by drivers and passengers	
Highway Capacity and LOS	2

Two-Lane Highways
– Factors describing service quality:
• Percent time spent following another vehicle (PTSF):
 The average percentage of time that vehicles are traveling behind slower vehicles (time headway between consecutive vehicles is less than 3 s)
• Average travel speed (ATS):
 The space mean speed of vehicles in the traffic stream
- Ideal capacity of a two-lane highway is:
• 1700 pc/h for each direction of travel
• 3200 pc/h for the two directions of the extended segment
• 3200-3400 pc/h for short sections of two-lane highway, such as a tunnel or bridge
– Base conditions for two-lane highways:
• Level terrain
• Passing permitted
• Lane width \geq 12ft and clear shoulders \geq 6 ft (See Fig. 9.10a)
• Same traffic volume in both directions (50/50 directional split)
• All passenger cars in traffic stream
• No restriction on through traffic due to control
Hishway Canacity and LOS 6

Highway Capacity and LOS

(a) Calculating PTSF:

PTSF = BPTSF + f_{dnp} • BPTSF = base percent time spent following for both directions • $f_{d/np}$ (Table 9.3) = adjustment in PTSF to account for the combined effect of: - Percent of directional distribution of traffic - Percent of passing zones $BPTSF = 100 | 1 - e^{-0.000879 v_p} |$ • v_p = passenger-car equivalent flow rate for the *peak 15-min period*

(b) Calculating ATS:

 $ATS = FFS - 0.00776v_p - f_{np}$

- ATS = average travel speed for both directions of travel combined (mi/h)
- *FFS* = free flow speed, the mean speed at low flow when volumes are < 200 pc/h
- f_{np} = adjustment for the percentage of no-passing zones (<u>Table 9.6</u>) v_p is calculated similar to previously but
- - f_{-} f_{G} is obtained from <u>Table 9.7</u>
 - $-E_T \& E_R$ are obtained from <u>Table 9.8</u>

(b) Calculating ATS:	
- <i>FFS</i> can be determined in three different ways:	
1. Field measurements at volumes < 200 pc/h	
2. Field measurements at volumes > 200 pc/h using the following correction $FFS = S_{rec} + 0.00776 \frac{-f}{f}$	1:
- $S_{FM} \equiv$ mean speed of traffic measured in the field (mi/h) - V_f = observed flow rate (veh/h) - f_{HV} = heavy vehicle adjustment factor	
3. Indirect estimation, when field data are unavailable	
$FFS = BFFS - f_{LS} - f_A$	
 FFS = estimated free-flow speed (mi/h) BFFS = base free-flow speed (mi/h) 	
- f_{LS} = adjustment factor for lane and shoulder width (<u>Table 9.9</u>) - f_A = adjustment factor for number of access points per mile (<u>Table 9.10</u>)	
 Note that <i>BFFS</i> depends on local conditions and the transportation engineer should estimate it based on their knowledge of the area and the speeds on similar facilities The range of <i>BFFS</i> is 45–65 mi/h 	
 Posted speed limits may serve as surrogates for BFFS 	
Highway Capacity and LOS	16

Highway Capacity and LOS

15

(a) Calculating PTSF:		
	Highway Capacity and LOS	10

- Lane width = 12 ft
- Total lateral clearance (edge of the road + median) \ge 12 ft (See Fig. 9.10a)
- No trucks, buses, or RV's
- A divided highway
- No direct access points along the highway
- Level grade
- Drivers are familiar with the freeway
- FFS higher than 60 mi/h

Highway Capacity and LOS

LOS Determination:

The procedure for LOS determination involves the following steps:

- Step 1: compute the value of flow rate (v_p)

$$v_p = \frac{V}{\text{PHF} \times N \times f_{HV} \times f_p}$$

- *V* = hourly peak volume in one direction (veh/h)
- N = number of lanes/direction
- PHF = peak-hour factor
- f_p = adjustment factor for the effect of driver population = 0.85–1.00
- f_{HV} = adjustment factor for the effect of heavy vehicles

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

Highway Capacity and LOS

- Step 2: compute the value of free-flow speed (FFS)

 $FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$

- BFFS = base free-flow speed (assume 60 mi/h if field data are unavailable)
- f_{LW} = adjustment factor for lane width (<u>Table 9.29</u>)
- f_{LC} = adjustment factor for lateral clearance (<u>Table 9.30</u>)
- f_M = adjustment factor for median type (<u>Table 9.31</u>)
- f_A = adjustment factor for access point density (<u>Table 9.32</u>)

27

28

Step 3: determine the value of average passenger car speed (S)
If v_p ≤ 1400 pc/h/ln, S = FFS
Otherwise, use FFS and v_p to determine S from Figure 9.7
Step 4: compute the density (D = v_p/S)
Step 5: use D to get LOS from Table 9.24

Highway Capacity and LOS

Example:

A 3200 ft segment of 3.25 mi four-lane undivided multilane highway in a suburban area is at a 2.5% grade. The highway is in level terrain, and lane widths are 11 ft. The measured free-flow speed is 46.0 mi/h. The directional peak hour volume is 1900 veh/h, PHF is 0.9, and there are 13% trucks and 2% RV's. Determine the LOS, speed, and density for the upgrade and downgrade.

For the downgrade:	
Highway Capacity and LOS	31

For the upgrade:	

For the upgrade:	
Highway Capacity and LOS	34

Basic Freeway Sections

- A freeway is a divided highway with full access control and two or more lanes in each direction
- Opposing traffic is separated by a raised barrier, an at-grade median, or a raised traffic island
- A freeway is composed of three elements:
 - Basic freeway sections
 - Weaving areas
 - Ramp junctions
- Basic freeway sections are segments outside the influence area of ramps or weaving areas

LOS Designations:	
• As per multilane highways,	
- LOS of basic freeway sections can be described by any two of	
• v_p (pc/h/ln)	
• \hat{S} (mi/h)	
• <i>D</i> (pc/mi/ln)	
Highway Capacity and LOS	38

