

Saturation Flow Rate Prediction	n
$f = 1 + \frac{(W - 12)}{W - 12}$	W = lane width (ft)
$f_w = \frac{30}{100}$	% HV = percent heavy vehicles for lane: group volume
$f_{TT} = \frac{1}{100} + \frac{\%}{HV}(E_T - 1)$	% G = percent grade on a lane group approach
$\int_{g}^{f} = 1 - \frac{1}{200} \frac{18N_{m}}{3600}$	N = number of lanes in lane group $N_m =$ number of parking maneuvers/h
$f_{p} = \frac{N}{\frac{N}{14.4N_{B}}}$ $f_{bb} = \frac{N - \frac{14.4N_{B}}{3600}}{N}$	N = number of lanes in lane group N_B = number of buses stopping/h
$f_a = 0.900$ in CBD $f_a = 1.0$ in all other areas	
Intersection Delay and LC)S analysis

Saturation Flow Rate Prediction						
f_{LU} :	Through or shared lane group: f_{LU} =0.95 Exclusive left turn or right turn f_{LU} =1					
f_{LT} :	Shared lane group: $f_{LT}=1/(1+0.05 P_{LT})$ Exclusive left turn : $f_{LT}=0.95$	P_{LT} = proportion of LTs in lane group				
f _{RT} :	Exclusive right turn : $f_{RT}=0.85$ Shared lane : $f_{RT}=1-0.15P_{RT}$	P_{RT} = proportion of RTs in lane group				
Intervention Delay and LOS analysis						

Delay for each approach

Approach Delay is a weighted average of the stopped delays of all lane groups on that approach.

$$d_A = \frac{\sum_i d_i v_i}{\sum_i v_i}$$

Where:

 d_A = average delay per vehicle for approach A in seconds, d_i = average delay per vehicle for lane group i (on approach A) in seconds, and v_i = analysis flow rate for lane group i in veh/h.

Intersection Delay and LOS analysis

Delay for Intersection Intersection Delay is the weighted average of the stopped delays of all approaches . $d_I = \frac{\sum_A d_A v_A}{\sum_A v_A}$ Where: $d_I = average delay per vehicle for intersection in seconds, and <math>d_A = average delay per vehicle for approach A in seconds, and <math>v_A = analysis flow rate for approach A in veh/h.$

Intersection Delay and LOS analysis

Dalia Said, Ph.D.

8

LOS at intersections					
	LOS	Signalized Intersection			
	А	≤10 sec			
	В	10–20 sec			
	С	20–35 sec			
	D	35–55 sec			
	Е	55–80 sec			
	F	≥80 sec			
Example: find the delay for the intersection designed in previous					
lecture, and the LOS of each lane group, approach , and intersection.					
Intersection Delay and LOS analysis 9					

