

CAIRO UNIVERSITY FACULTY OF ENGINEERING Soil Mechanics and Foundations Engineering Division

FOUNDATIONS

4 th Ye	EXERCISE (2)
	BEARING CAPACITY 2016-2017
1) a-	State the factors affecting the bearing capacity of shallow foundations resting on clays and sands.
b-	A footing of area 2×3 m was founded at a depth 2 m below G.S. on a silty
	clay layer (c = 0.5 kg/cm ² , ϕ = 20° and γ_{sat} = 1.8 t/m ³). If the factor of safety against bearing capacity failure is 3, find the ultimate and allowable load that
	can be supported by the footing if:
	i) Water level is 2.0 m above G.S.,
	ii) Water level is at F.L., and
	iii) Water level is at a great depth.
	iv) Comment on the results.
	Discuss how the bearing capacity of footing is affected if placed on top of sloping ground.
ida _ 140 -	A column carries 200 tons which is to rest on a square facting and

- A column carries 200 tons which is to rest on a square footing on dry sand with $\phi = 34^{\circ}$ and $\gamma = 1.7 \text{ t/m}^3$. The factor of safety is to be 3.
 - i) Find the size of the footing if it rests at the ground surface.
 - ii) Find the size of the footing if it rests at a depth of 2 m below ground surface.
 - iii) Find the size of square footing required for cases (i), (ii) if the water table rises to G.S. increasing the soil unit weight to 2 t/m^3 .
 - iv) Comment on the results.

1

1

- 3) a- Sketch the shear failure surface below a strip footing due to a general symmetric bearing capacity failure, indicating the active, transition and passive zones.
 - b- In Figure (1), calculate the minimum width of the isolated footing required to ensure that the settlement due to clay compressibility does not exceed 2.5 cm.
 - c- Calculate the factor of safety against bearing capacity failure associated with the footing dimensions determined in (b).
 - d- Calculate the soil modulus of subgrade reaction considering the applied load given in (b).
- 4) a- What are the effects of the following factors on the bearing capacity of shallow foundations:
 - 1. Foundation shape.
 - 2. Eccentric loading.
 - b- A rectangular footing measures 1.50 m by 0.75 m is subjected to an eccentric load as shown in Figure (2). Determine the allowable gross bearing capacity and the allowable load applied eccentrically on the footing, given that $\gamma = 1.8$ t/m³, c= 0 and $\phi = 30^{\circ}$.
- 5) A raft (15m x 20 m) with a basement is to be designed to support a residential building, with a foundation level 5.0 m below ground surface. The supporting soil is deep clay of $\gamma_{sat} = 1.75 \text{ t/m}^3$, $c = 4 \text{ t/m}^2$ and $\phi = 0^\circ$. Estimate the allowable bearing capacity in the following cases:-

5

- 1. The water table is 5.0 m deep, i.e. @ F.L.
- 2. The water table is 1.0 m deep below G.S.

Figure (1)

Figure⁽²⁾

٠.