

Course Specifications			
Program(s) on which this course is given:	B.Sc. in Aerospace Engineering		
Department offering the program:	Aerospace Department		
Department offering the course:	Aerospace Department		
Academic Level:	2014-2015 / 2nd year		
Date	November, 2014		
Semester (based on final exam timing)	□ Fall □ Spring		
A Degie Information			

A- Basic Information

1. Title:	Thermodynamics (3+2)			Code:		AER 205			
2. Units/Credit hours per week:	Lectures	3	Tutorial	2	Practic	al	included	Total	5

B- Professional Information

1. Course description:							
2. Intended Learning Outcomes of Course (ILOs):	a) Knowledge and Understanding						
	The students successfully completing this course will:						
	1. understand the thermodynamic considerations for different cycle analysis						
	(like gas turbine analysis (Ideal and real Brayton cycle),						
	2. differentiate between ideal and real Otto, Diesel, and Dual cycles) etc.)						
	3. Know the thermodynamic laws to help in evaluating the operation and overall						
	engine performance						
	b) Intellectual Skills						
	4. The student should Hypothesize and synthesize the modeling process						
	5. The student should have to analyze results and draw conclusions						
	c) Professional and Practical Skills						
	6. The student will construct and use software codes						
	7. The student will be able to present finding to fellow students through an oral						
	presentation in a formal classroom setting						
	d) General and Transferable Skills						
3. Contents							
Торіс		Total hours	Lectures hours	Tutorial/ Practical hours			
Power Cycles		1	1	0			
Carnot		4	2	2			

Rankine	5	3	2	
Otto	5		2	
Diesel	sel 5		2	
Dual	5	3	2	
Ericson, Stirling	5	3	2	
Brayton	6	4	2	
Reversed Cycles	5	3	2	
Applications on Power Stations,	5	3	2	
Propulsion System	opulsion System 3		2	
Refrigeration	2	1	2	
Thermodynamic Relations	7	5	2	
Mixtures and Solutions	7	3	4	
Chemical Reactions	7	3	4	
Introduction: to Chemical Equilibrium	6	4	2	
Introduction to Statistical Thermodynamics	1	1	0	
	Σ 81	47	34	
	Lectures ()	Practical Training/ Laboratory ()	Seminar/Workshop ()	
4. Teaching and Learning Methods	Class Activity ()	Case Study ()	Projects ()	
5 Student Assessment Methods	E-learning ()	Assignments /Homework ()	Other:	
5. Student Assessment Methods				
Assessment Schedule		VV CCK		
-Assessment 1; Class test				
-Assessment 2, Project Assignment				
-Assessment 3: Midtern Exam				
-Assessment 4: Final Exam				
Weighting of Assossments				
weignting of Assessments				

Head of Department:	of Department: Prof. Ayman Hamdy Kassem			
Course Coordinator:	Prof. Ibrahim Shabaka			
PC computer and internet connection				
 Projector and overhead projectors 				
Lecture rooms				
7. Facilities Required for Teaching and Learning				
Van Wylen, Gordon J. and Sonntag, Richar E., Fundamentals of Classical Thermodynamics, John Wiley and				
Milton; Thermodynamics, Combustion and Engines; Chapman & Hall, 1995.				
Eastop & Micconkey; Applied Thermodynamics for Engineering Technologists; Longman, 1996.				
Easten & McConkour Applied Thermodynamics for Engineering Technologists: Longman, 1996				
Inc., 1998. Cengel Y A and M A	Thermodynamics: An Engineer	ring Approach WCB/McGraw Hill 1998		
Sonntag, R. E.; Borgnakke, C. and Van Wylen, G. J., Fundamentals of Thermodynamics, John Wiley and Sons				
Course Notes				
6. List of References				
-Total	100%			
-Presentation		5%		
-Class Test		5%		
-Project		15%		
-Final-term Examination		60 %		
-Mid-Term Examination		15 %		