Faculty: Engineering Department: Aerospace Engineering

Course Specifications

Programme on which the course is given: B.Sc. in Aerospace Engineering

Major or minor element of programme: Major

Department offering the programme: Aerospace Department

Department offering the course: Aerospace Department

Academic year / Level: 3rd year

Date of specification approval: March 2015.

A- Basic Information	
-----------------------------	--

Title:	Propulsion of Jet Engines	Code:	AER 306		
Credit Hours:	3	Lectures:	4		
Tutorials:	2	Practical:	Included	Total:	6

B- Professional Information

1- Overall Aims of Course

- To distinguish between the capabilities of different types of Turbomachines.
- To provide the capability of conducting design analysis of axial flow compressors and turbines.
- To predict existing compressor or turbine off design characteristics.
- To know the types of intakes for different operating regimes and applications.
- To appreciate the internal and external aspects of intake performance, and to be able to use suitable analysis techniques for its evaluation for subsonic airplanes.
- To know the types of nozzles for different operating regimes and applications, and to appreciate the associated scientific problems.

2- Intended Learning Outcomes of Course

a- Knowledge and Understanding

- **a1-** Basic knowledge of compressor and turbine cascade characteristics.
- **a2-** Stage analysis and effects of its parameters on compressor and turbine design point overall performance.
- **a3-** Estimating off design performance of compressors and turbines.

b- Intellectual Skills

- **b1-** Hypothesizing and synthesizing the modeling process.
- **b2-** The ability to analyze results and draw conclusions.

c-Professional and Practical Skills

c1- Construct and use software codes.

d- General and Transferable Skills

- **d1-** The capability to split complicated systems into model-able modules.
- **d2-** The capability to choose a convenient model rigorous to employ.
- **d3-** To have an over view of the design process.
- **3- Contents**

Торіс	Total hrs	Lectures	Tutorial
Introduction			
Classification of turbomachines	3	3	
Torque-power-velocity triangle - blade passage	2	2	
Axial flow compressors			
Temperature rise across stage – aerodynamic loading coefficients	4	2	2
Cascade geometry-incidence-deviation-deflection-NACA65 series	2	2	
Deviation prediction	2	2	
Types of losses -diffusion factor- profile loss correlation	4	4	
Optimum incidence	2	2	
Stage efficiency evaluation	2	2	
Degree of reaction – nondimensional velocity triangle	2	2	
Blockage-work done factor	2	2	
Design of multistage compressor based on mean line analysis	8	2	6
Basic concepts in off design analysis	2	2	
Off design evaluation of compressor stage	7	2	5
Stall and compressor surge	2	2	
Axial flow turbines			
Introduction-temperature drop across stage	2	2	
Flow outlet angle	2	2	
Losses: Soderberge - Ainely's correlation	2	2	
Degree of reaction implications on velocity triangle	2	2	
Design of turbine based on mean line analysis	7	2	5
Turbine stage off design performance	3	3	
Multistage turbine performance characteristics	7	2	4
Turbine cooling techniques	3	2	
3D flow in turbomachines			
Simple radial equilibrium equations- indirect problem	3	3	
Direct problem	5	2	3
Intakes			
Intake pressure recovery	2	2	
Intake drag, approximate theory of frictional losses	4	4	
Nozzles			
Characteristics of convergent nozzles	2	2	
Types and performance of convergent divergent nozzles	2	2	
	90	63	27

4- Teaching and learning Methods

- **4.1** Lecturing in a dynamic way and using teaching aids (slides and overhead projector).
- **4.2** Assignments including closed and open ended problems.

5- Student Assessment Methods

- **5.1** Quizzes to asses design tools
- 5.2 Reports to asses small preliminary design problems
- **5.3** Exams to asses the ability to cast inputs and use engine analysis techniques to produce specific outputs

Assessment Schedule

Assessment	1	Quiz 1	Week	3
Assessment	2	Report 1	Week	4
Assessment	3	Quiz 2	Week	5
Assessment	4	Report 2	Week	7
Assessment	5	Midterm exam	Week	8
Assessment	6	Report 3	Week	9
Assessment	7	Quiz 3	Week	10
Assessment	8	Report 4	Week	12
Assessment	9	Quiz 4	Week	13
Assessment	10	Report 5	Week	15
Assessment	11	Final Exam	Week	16

Weighting of Assessments

Mid-term Examination	10 %
Final-term Examination	68 %
Semester work	22 %

6- List of References

6-1 Course Notes

Not available

6-2 Essential Books (Text Books)

- N.Cumpsty, "Compressor Aerodynamics", 1989
- R.I.Lewis, Turbomachinery Performance Analysis", 1996
- S.Dixon, "Fluid Mechanics and Thermodynamics of Turbomachines", 1998

6-3 Recommended books

- J.L.Kerrbrock, "Aircraft Gas Turbines and Engines", 1992
- P.G.Hill, G.R.Peterson, "Mechanics and Thermodynamics of Propulsion", 1992
- H.Cohen, G.F.C.Rogers, H.Saravanamuttoo, "Gas Turbine Theory", 1996
- Seddon, E.L.Goldsmith, "Intake Aerodynamics", 1999

6-4 Periodicals, Web sites, etc

7- Facilities Required for Teaching and Learning

- Lecture rooms
- Projector and overhead projectors
- PC computer and internet connection

Course Coordinator: Prof. A.A Hashem

Head of Department: Prof. Ayman H. Kassem

Date: March, 2015.