

Department offering the program: Department of Aerospace Engineering Department offering the course: Department of Aerospace Engineering Cademic Level: B.Sc. Date March 23 2015 Semester (based on final exam timing) Ix Fall Semester (based on final exam timing) Ix Fall I. Title: Plasticity Code: AER 638 2. Units/Credit nours per week: Lectures 3. Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understan					Course Spe	ecification	ns				
Department of fering the course: Department of Aerospace Engineering Academic Level: B.Sc. Date March 23 2015 Semester (based on final exam timing) IX Fall Spring Spring A- Basic Information IX Fall I. Title: Plasticity Code: AER 638 2. Units/Credit nours per week: Lectures B- Professional Information 15 B- Professional Information I. Course description: This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plasti strain increment, plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.	Program(s) on which this course is given:			Aerospace Engineering							
Academic Level: B.Sc. Date March 23 2015 Semester (based on final exam timing) Image: K Fall Spring A- Basic Information Spring A- Basic Information Code: AER 638 2. Units/Credit nours per week: Lectures 27 Tutorial 15 Practical 3 Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To know the importance of considering plasticity phenomena in structures design damage D understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills Do latellectual Skills To learn the monolithic materials theories for calculating plastic deformation of stress, tim and rate of application, plasticity constitutive relationships and models.	Department offering the program:			Department of Aerospace Engineering							
Date March 23 2015 Semester (based on final exam timing) Ix Fall Spring A- Basic Information Ix Fall Spring A- Basic Information Code: AER 638 I. Title: Plasticity Code: AER 638 2. Units/Credit nours per week: Lectures 27 Tutorial 15 Practical 3 Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories o computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastis strain increment, plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.	Department offering the course:										
Semester (based on final exam timing) Ix Fall Spring A- Basic Information I. Title: Plasticity Code: AER 638 2. Units/Credit nours per week: Lectures 27 Tutorial 15 Practical 3 Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories or computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.											
A- Basic Information I. Title: Plasticity Code: AER 638 2. Units/Credit nours per week: Lectures 27 Tutorial 15 Practical 3 Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories o computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plasti strain increment, plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.		e* 1		• \							
2. Units/Credit nours per week: Lectures 27 Tutorial 15 Practical 3 Total 45 B- Professional Information This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastis strain increment, plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.				ining)		spi					
nours per week:Lectures27Tutorial15Practical3Total45B- Professional InformationThis course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and designa) Knowledge and UnderstandingTo know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity.b) Intellectual SkillsTo learn the monolithic materials theories for calculating plastic deformation , plasti strain increment, plastic strain flow and plastic strain flow rate as function of stress, tim and rate of application, plasticity constitutive relationships and models.	1. Title:	Plasticity	/			Code: AER 638					
B- Professional Information I. Course description: This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design a) Knowledge and Understanding To know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.		Lectures		27	Tutorial	15	Practic	al	3	Total	45
I. Course description:This course is intended to introduce the basic concepts of metallic materials plasticity plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and designa) Knowledge and UnderstandingTo know the importance of considering plasticity phenomena in structures design damage To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity.b) Intellectual SkillsTo learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.	hours per week:	Lectures 21		21			Tractical 5		5	Total	45
I. Course description:plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and designa) Knowledge and UnderstandingTo know the importance of considering plasticity phenomena in structures design damageTo understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity.b) Intellectual SkillsTo learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.	B- Professiona	al Inform			ntended to int	troduce the	hasic cor	ncents (of metal	lic materials r	alasticity
To know the importance of considering plasticity phenomena in structures design damageTo understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity.b) Intellectual SkillsTo learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.	1. Course description:		plastic flow, plastic flow rate , plastic hardening, plastic constitutive model , theories of computing stress and total strain associated with plastic deformation with application to engineering structures analysis and design								
 To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models. 			a) Knowledge and Understanding								
 rate dependent plasticity. b) Intellectual Skills To learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models. 			To know the importance of considering plasticity phenomena in structures design damage								
2. Intended Learning Course To learn the monolithic materials theories for calculating plastic deformation , plastic strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.			To understand basic differences between stress dependent, plasticity, time dependent and rate dependent plasticity.								
2. Intended Learning Strain increment, plastic strain flow and plastic strain flow rate as function of stress, time and rate of application, plasticity constitutive relationships and models.			b) Intellectual Skills								
		0	, , , , , , , , , , , , , , , , , , ,								
	(ILOs):	000000									
c) Professional and Practical Skills			c) Professional and Practical Skills								
Application of plasticity calculations to engineering components design			Application of plasticity calculations to engineering components design								
Plastic deformation effects on aerospace structures and engines performance and strength			Plastic deformation effects on aerospace structures and engines performance and strength								
d) General and Transferable Skills			d) General and Transferable Skills								
Plastic deformation inspection			Plastic deformation inspection								
3. Contents	3. Contents										

Торіс	Total hours	Lectures hours	Tutorial/ Practical hours
Stress, time and rate dependent plastic damage and deformation		3	
Variation of material properties with plasticity		3	
Theories of plastic deformation, plastic flow and plastic flow rate constitutive relationships		9	9
Limit analysis and shake down theories		3	
Application of plasticity calculations to truss and frame structures.		6	6
Applying plasticity calculations to finite		3	3

element structural analysis					
	Lectures (27)	Practical Training/ Laboratory (15)	Seminar/Workshop (3)		
4. Teaching and Learning Methods	Class Activity (4)	Case Study (1)	Projects (1)		
	E-learning (2)	Assignments /Homework (5)	Other:		
5. Student Assessment Methods					
Assessment Schedule		Week			
-Assessment 1;Class test		4,5,6			
-Assessment 2; Project Assignment		7			
-Assessment 3; Presentations		10			
-Assessment 3; Midterm Exam		9			
-Assessment 4; Final Exam		16			
• Weighting of Assessments					
-Mid-Term Examination		20			
-Final-term Examination		40			
-Project		20			
-Class Test		15			
-Presentation		5			
-Total		100			
6. List of References					
Plasticity: Fundamentals and General	Results. , Editor: J. B.	Martin, ISBN-10: 026213114	5		
Plasticity: Fundamentals and Applicat	ions, Editor: P.M. Dixi	t, U.S. Dixit, ISBN 9781466506	5183		
7. Facilities Requueired for Teaching	g and Learning				
Computer lab					
Course Coordinator: Nader M.	Abuelfoutouh				
Head of Department: Ayman H	Kassem				