

	Course Specifications					
Program (s) on which this course is given:	Masters program.					
Department offering the program:	Aerospace department					
Department offering the course:	Aerospace department					
Academic Level:	Post graduate					
Date	2014-2015					
Semester (based on final exam timing)	🗆 Fall 🗌 Spring					
A- Basic Information						

1	1. Title: Optimal control of vehicles		5	Code:		AER65	1			
2	. Units/Credit	Lectures	2	Tutorial		Practic	al		Total	2
h	ours per week:	Lectures	2	Tutonui		Thethe	ui		Total	2

B- Professional Information

1. Coursedescription:	In this course, methods are presented for analysis and synthesis of the steady state and perturbed state stability and control of fixed wing aircraft. The course is aimed at first level graduate students of aeronautical engineering. Aeronautical engineers working in the aircraft industry will also find this course useful. Throughout this course the practical (design) applications of the theory are stressed with many examples. Aircraft stability and control characteristics are all heavily regulated by civil as well as by military airworthiness authorities for reasons of safety. The role of these safety regulations in the application of the theory is therefore stressed throughout. Many of the examples used to illustrate the application of the theory were generated with the help of a computer programs. An introduction to the construction and interpretation of Bode plots with open and closed loop airplane applications is presented. An important inverse application is also given. The use of the root locus method and the Bode method are illustrated with examples. Classical control theory can be used to predict whether or not an airplane can be controlled by a human pilot. This is done with the aid of human pilot transfer functions. The student is introduced to various aspects of automatic control of airplanes. It is shown why certain airplanes require stability augmentation. Pitch dampers, yaw dampers and roll dampers are discussed. The student is familiarized with the basic synthesis concepts of automatic flight control modes such as: control-stick steering, various autopilot hold modes, speed control, navigation modes and automatic landing modes. A brief introduction to digital control systems using classical control theory is provided. Applications of the Z-transformation method are also included.
2. Intended Learning	a) Knowledge and Understanding

Outcomes (ILOs):	of	Course	Root locus method for control system analysis and design.				
(Frequency response method for control system analysis and design.				
			Design and compensation techniques.				
			Digital control system analysis and design.				
b) Intellectual Skills							
Analyze autopilot control system and evaluate transient and steady state perfo							
			Select appropriate compensation technique for autopilot.				
			Design autopilot to meet defined performance specifications and evaluate design.				
			c) Professional and Practical Skills				
			Identify basic components of autopilot control system.				
			Use computer software packages to design, simulate, and evaluate autopilot control systems.				
			d) General and Transferable Skills				
			Prepare effective and informative technical reports and present results on autopilot control systems.				
			Communicate effectively with colleagues to interchange knowledge and information in ad control systems.				
3. Contents							

3. Contents

Торіс	Total hours	Lectures hours	Tutorial/ Practical hours
1. Theory and Applications of Bode			
Plots			
1.1 Introduction to the frequency			
response of linear systems			
1.2 Determination of the			
frequency response of linear	3	3	
systems directly from the system			
open loop transfer function			
1.3 Asymptotic approximations to			
real frequency response of			
transfer functions: Differentiators			

and Integrators, First order lead			
and lag transfer functions, Second			
order lead and lag transfer			
functions.			
1.4 Applications of Bode plots to			
airplanes: Bode plots for speed,			
angle of attack and pitch attitude			
angle response to elevator inputs,			
Bode plots for sideslip angle, bank	3	3	
angle and heading angle response	3	3	
to aileron and rudder inputs			
1.5 Inverse application of Bode			
plots.			
2. Classical Control Theory with			
Applications to Airplanes			
2.1 Example of the potential of			
feedback control			
2.2 Basic relationships and			
definitions used in feedback			
Control systems.	3	3	
2.3 The root locus method, Root			
locus fundamentals, Root locus			
asymptotes, Breakaway angle from			
a complex pole, Step-by-step			
construction of a root locus			
diagram.			

2.4 Application of the Bode plot			
method to control System analysis			
2.5 Connection between frequency			
and time domains.			
2.6 system performance			
specifications: Frequency domain			
specifications, Time domain			
specifications, Error and error			
constant specifications, Error			
characteristics of unity negative			
feedback systems, Error			
characteristics of general systems,			
System sensitivity.			
2.7 Some feedback control system	3	3	
design applications: A multiple	5	5	
feedback loop system: pole			
assignment, Setting system gain to			
achieve a specified damping ratio,			
Setting gain to achieve a specified			
gain margin and position error			
constant, Finding lag			
compensation to alter the			
breakaway angle from complex			
poles, Finding a lead-lag			
compensator to increase system			
gain margin, Using cancellation			
compensation to achieve better			
closed loop characteristics, Root			

contours for variable poles, Root			
contours for variable zeros.			
3. Analysis of Airplane Plus Pilot as			
a Closed Loop Control System			
3.1 The human pilot transfer			
function.	3	3	
3.2 Pilot control of bank angle.			
3.3 Pilot control of pitch attitude			
angle.			
4. Stability Augmentation and			
Automatic Flight Control Systems			
4.1 Yaw dampers.			
4.2 Pitch dampers.			
4.3 static stability augmentation	3	3	
systems: Angle-of-attack feedback			
to the longitudinal controls, Load			
factor feedback to the longitudinal			
controls, Sideslip feedback to the			
directional controls.			
4.4 Basic autopilot systems.			
4.5 Basic longitudinal autopilot			
modes: Pitch attitude hold mode,	3	3	
Altitude hold mode, Airspeed or	J	U.	
mach number hold mode,			
Airspeed hold mode using auto			

throttles, Airspeed hold mode			
using speed brakes, Mach hold			
using the elevator, Mach tuck			
control (mach trim), Control wheel			
steering mode.			
4.6 Basic lateral-directional			
autopilot modes: Bank angle hold			
mode, Heading angle hold mode,			
Turn rate mode at constant speed			
and altitude, Turn coordination			
(zero lateral acceleration).			
4.7 longitudinal navigation modes:			
Approach categories and guidance,			
Glide slope mode, Automatic flare			
mode.			
4.8 Lateral-directional navigation			
modes: Localizer hold mode,			
V.O.R. hold mode			
4.9 Multiple loop, multiple variable			
control systems			
	3	3	
4.10 Separate surface control			
systems: Introduction and			
definitions, Closed loop analysis of			
separate surface control systems.			
5. Fundamentals of Digital Control			
System Analysis	3	3	

5.1 Introduction to signal			
sampling.			
5.2 Laplace transforms and			
sampled data systems: The			
uniqueness problem, The Laplace			
transform of the sampled unit			
step, The Laplace transform of the			
sampled function.			
5.3 Reconstruction of analog data			
_			
from sampled data: Introductory			
observations, The zero order hold,			
The first order hold.			
5.4 Fundamentals of z-transform			
theory: Definition and derivation			
of z-transforms, Mapping of the s-			
plane into the z-plane, Mapping of	3	3	
constant damping loci, Mapping of			
constant frequency loci, Mapping			
of constant damping ratio loci,			
Mapping of constant un-damped			
natural frequency loci, Inverse z-			
transforms, Important z-transform			
properties.			
5.5 An application of a transformer			
5.5 An application of z-transforms:			
The pulse transfer function of	3	3	
sampled data systems, Closed loop			
sampled data systems, A simple			

		1		
bank angle control system.				
5.6 Effect of sampling frequency				
on the stability of digital systems:				
Jury's test, Routh-Hurwitz				
criterion, The root-locus method.				
5.7 Relations between the s-, z-				
and time domains.				
6. Hardware Aspects of Autopilot				
Systems				
,				
6.1 Autopilot and sensor				
fundamentals: Pitch attitude angle,	3	3		
8 and bank angle, Heading angle,				
Angular rates.				
6.2 Autopilot modes.	3	3		
		Dractical Training/		
	Lectures (*)	Practical Training/ Laboratory ()	Seminar/Workshop ()	
4. Teaching and Learning Methods	Class Activity	Case Study ()	Projects ()	
	E-learning ()	Assignments /Homework ()	Other:	
5. Student Assessment Methods	1	·		
Assessment Schedule		Week		
-Assessment 1;Class test		10		
-Assessment 2; Project Assignment				
-Assessment 3; Presentations				
-Assessment 3; Midterm Exam		8		
-Assessment 4; Final Exam		14		
Weighting of Assessments -Mid-Term Examination		10		
-Final-term Examination		80		
-Project				
-Class Test		10		
-Presentation				

-Total		100						
6. List of References								
Jan Roskam, "	Jan Roskam, "Airplane Flight Dynamics and Automatic Flight Controls", Part II,							
DARcorporati	DARcorporation, 1998.							
Donald Mclear	n, "Automatic Flight Control S	Systems", Prentice Hall, 1990.						
Journal of Gu	idance and Control, AIAA Jo	ournal.						
7. Facilities Required fo	r Teaching and Learning							
Normal class, white board	d, projector, computer.							
Course Coordinator:	Prof. Gamal El-Bayoumi							
Head of Department:	Prof. Ayman Hamdy Kassem							