Course Specifications

Programme on which the course is given: Aerospace Engineering

Major or Minor element of programmes: Major

Department offering the programme

- : Aerospace Engineering Department
- : Engineering Mathematics and Physics
- : Third Year

Date of specification approval : March 2015.

A-Basic Information

Department offering the course

Academic year/level

Title : Probability and Statistics

Code : MTH 316B

Specification is not based on credit hour system.

However, an equivalent computation is based on:

1 credit hour = 1 contact hour for lecture,

1 credit hour = 2 contact hours for tutorial or practical:

Lecture: 3 Hrs./week Tutorial: 1 Hr./week Practical: 0 Total: 4 Hrs./week (contact hours per week: Lecture 3, Tutorial 1, Total 4 hours)

B- Professional information

1.Overall Aims of Course

At the end of this course, the student should

- have some statistical awareness with an ability to present and analyze data as well as to understand and interpret presented data.
- understand the ideas of randomness and uncertainty and their grounding in probability theory
- be able to make effective decisions based on sampling and statistical inference.

2.Intended Learning Outcomes of Course (ILOs)

a- Knowledge and understanding:

I. Probability Theory:

- a1. Basic Notations and Definitions.
- a2. Axioms of Probability and Basic Theorems.
- a3. Conditional Probability and Independence.
- a4. Random Variables and Probability Distribution Functions, Expectations and Moments.
- a5. Special Univariate Distributions; Discrete and Continuous.
- a6. Joint and Conditional Distributions, Independence and Correlation.

II. An Introduction to Statistics:

- Sampling and Sampling Distributions.
- Estimation of Parameters, Point Estimators, and Confidence Intervals.

- Hypothesis Testing.
- Correlation and Simple Linear Regression.
- Goodness of Fit and Contingency Tables.

b- Intellectual Skills:

- b1- Apply the probability theory to solve applied engineering problems.
- b2- Estimation of basic population parameters.
- b3- Make effective decisions based on sampling and hypothesis testing.
- b3- Discover how random variables are related (Independence and Correlation).

3.Contents

Торіс	No. of hours	Lecture	Tutorial
Basic Notations and Definitions. Axioms of	6	4	2
Probability and Basic Theorems			
Conditional Probability and Independence	5	4	1
Random Variables and Probability Distributions	9	7	2
Moment Generating Functions. Measures of			
location and Dispersion.			
Some Special Discrete Distributions.	4	3	1
Some Special Continuous Distributions. The	6	5	1
Normal Distribution.			
Joint Distributions. Covariance and Correlation.	7	5	2
Statistical Awareness and an idea about	5	3	2
Sampling. The Central Limit Theorem.			
Estimation of Parameters.	5	4	1
Concepts of Hypothesis Testing	5	4	1
Goodness-of-Fit Testing and the Chi-squared	5	4	1
Distribution Contingency Table Analysis.	_		
Linear Regression and Correlation.	3	2	1
TOTAL	60	45	15

4. Teaching and Learning Methods

4.1- Lectures.

4.2- Tutorial sessions to discuss solutions of pre-distributed sets of problems.

5.Assessment Schedule

Assessment 1	Midterm	9 th Week
Assessment 2 :	Quiz	14 th Week
Assessment 3 :	Final	16 th Week

Weighting of Assessments

Total	100%
Attendance and contribution	9%
Final	70%
Midterm	14%
Quiz	7%

6.List of References

6.1 - Course Notes:

Lecturer notes (in English).

6.2- Essential Books (Text Books)

Applied Statistics and Probability for Engineers. Fourth Edition 2006 by Douglas C. Montgomery and George C. Runger.

6.3- Recommended Books

Probability and Statistics for Engineers and Scientists. Third Edition by Sheldon Ross.

7. Facilities Required for Teaching and Learning

White board, projector.

Course Coordinator:- Dr. Nabila Philip Attalla Seif Head of Department: Prof. Ayman H. Kassem

Date: March, 2015.

: